
Non-Blocking Inter-Partition Communication with
Wait-Free Pair Transactions

Ethan Blanton1 Lukasz Ziarek1,2

Fiji Systems Inc.1 SUNY Buffalo2

{elb, luke}@fiji-systems.com

ABSTRACT
Predictable concurrency control is difficult. In this paper we present
wait-free pair transactions, a lightweight, transactional communi-
cation object with the goal of achieving predictable communica-
tion between concurrent threads of execution, a key component to
predictable concurrency control. Wait-free pair transactions allow
entirely non-blocking, but one-way, communication between a ded-
icated reader and writer. Wait-free pair transaction objects provide
transactional semantics for data consistency on the object being
communicated by the reader and writer, but never require block-
ing, have a strictly bounded spatial overhead, and constant time
overhead for any field accesses. We provide a detailed description
of the implementation of wait-free pair transactions in Fiji VM and
show how they can be leveraged for safe and predictable commu-
nication in a mixed-criticality environment. We demonstrate the
runtime characteristics and predictability of wait-free pair transac-
tions on a mixed criticality UAV flight control system benchmark.

1. INTRODUCTION
Reads from and writes to shared data are the most fundamen-

tal form of communication between threads in many real-time sys-
tems. Sharing data between threads that run concurrently requires
a protocol to ensure that each thread accesses a consistent view
of the data, changes to the data are not lost, and race conditions
do not occur. In Java, these assurances are typically achieved via
mutual exclusion (e.g., monitors) — ensuring that two threads do
not attempt to modify the same logical data structures at the same
time, and that a thread does not attempt to view a data structure
while it is in an inconsistent state due to ongoing modifications by
another thread. We can view this as the protocol provided by the
monitors that protect synchronized methods and blocks. Mutual
exclusion presents difficulties for real-time systems, as shared data
may be accessed by threads of differing priorities. Practical imple-
mentations require additional protocols to prevent or bound priority
inversion, the situation where a lower priority thread holds a mon-
itor required by a higher priority thread (thus blocking it), as well
as careful design to ensure that critical sections in lower priority
threads are not long enough to cause deadline misses in higher pri-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
JTRES’13, October 09 - 11 2013, Karlsruhe, Germany
Copyright 2013 ACM 978-1-4503-2166-2/13/10 ...$15.00.
http://dx.doi.org/10.1145/2512989.2512994.

ority threads even under worst-case scenarios. Other techniques for
achieving consistency include atomic updates and software mem-
ory transactions [17, 8, 18]. Atomic updates can generally be used
only for very small data structures (a few machine words), and re-
quire hardware assistance to avoid falling back to a mutual exclu-
sion implementation (i.e., being backed by a lock, either at the OS
or VM level). Transactions allow multiple threads to access shared
data in a way that is logically equivalent to a serial schedule (e.g.,
a schedule with mutual exclusion). Transactions can avoid enforc-
ing strict blocking for updates, provided they can safely proceed
in parallel. Nonetheless, they still require blocking or additional
runtime constructs to resolve conflicting updates and out of order
reads. Predictable unrolling of software transactions is an open
problem, and one proposed solution is to fall back on mutual ex-
clusion [23] — with all of the considerations thereof.

Synchronization and shared-state communication between Java
VMs in a mixed-criticality multi-VM system is an open problem.
The Java standard does not provide monitors between VMs, and
monitors between criticality levels of a mixed-criticality system
(with associated blocking) are problematic in general.

In this paper, we introduce wait-free pair transactions (WFPTs),
a lightweight transactional communication object that allows en-
tirely non-blocking, but one-way, communication between a reader
and a writer. Wait-free pair transaction objects provide transac-
tional semantics for data consistency between the reader and writer,
but never require blocking, have a strictly bounded spatial over-
head, and impose constant time overhead on any object accesses.
These properties are provided in return for the restriction that there
can be only one reader and one writer for each WFPT. We can thus
view a WFPT as a one-way predictable communication channel1.

We provide two different execution models for WFPTs: 1) com-
munication through WFPTs by local threads executing in a single
virtual machine (VM) instance, and 2) communication across mul-
tiple VMs instances within the context of a multi-VM, to provide
a mixed-criticality communication mechanism. The semantics of
this mechanism ensure that communication across the partitions be-
tween virtual machines cannot violate priority constraints, cannot
affect timings between virtual machines, and cannot lead to refer-
ential inconsistencies. To the best of our knowledge, wait-free pair
transactions are the first mixed-criticality aware, direct, and pre-
dictable communication mechanism.

Specifically the contributions of this paper are as follows:

1. The design of a new, predictable communication mechanism
for real-time systems called wait-free pair transactions. WF-
PTs provide consistency without requiring blocking and have

1We observe that two way channels can be encoded by leveraging
multiple one way channels.

Autopilot Fly-by-wire

WFPTs

Fiji VM Fiji VM

Fiji MVM

Serial Bus

Simulator

Figure 1: The structure of papabench split into multiple VM
instances within the Fiji multi-VM. WFPTs are used as natural
communication mechanisms between the VMs.

constant time overheads with bounded spatial constraints.

2. A prototype implementation of WFPTs in the context of Fiji
VM. Our implementation supports WFPTs within a single
VM as well as across VMs in a multi-VM deployment.

3. A performance evaluation and empirical validation of WF-
PTs on a UAV flight system benchmark on a multi-VM.

The remainder of this paper is structured as follows. We present
a motivating example, a mixed-criticality flight control system, to
illustrate the challenges of cross-partition predictable communica-
tion in Section 2 and explore the application of WFPTs to a multi-
VM application. Section 3 describes the semantics of wait-free pair
transaction objects. Section 4 presents the implementation of WF-
PTs within the Fiji VM and compiler. Results and evaluation are
presented in Section 6. Related work and conclusions are given in
Section 7 and Section 8, respectively.

2. MOTIVATING EXAMPLE
As a motivating example, consider jPapaBench [9], a complex

aerospace benchmark written for Java. jPapaBench is derived from
a core set of the Paparazzi [1] project, an open-source UAV flight
system. To illustrate the benefits of WFPTs and their applicability
to real-time systems, we focus on the communication mechanisms
within the benchmark itself.

The jPapaBench code is conceptually divided into three major
modules: the autopilot, which controls UAV flight and is capa-
ble of automatic flight in the absence of other control; the fly-
by-wire, which handles radio commands from a controlling sta-
tion and passes information to the autopilot to be integrated into
flight control; and the simulator, which collects information from
each of the other modules and determines the UAV’s location, tra-
jectory, and generates input from the environment (such as GPS
data, servo feedback, etc.). Two of these modules, the autopilot
and fly-by-wire (FBW), are housed in different microcontrollers on
the conceptual hardware, and the jPapaBench code simulates a se-
rial bus between them — they have no other direct communication
paths. The simulator is only loosely coupled to the FBW module,
but shares a moderate amount of state with the autopilot.

The autopilot and FBW module are logical candidates for divi-
sion into a multi-VM system, as the implementation they simulate
allows the two devices to proceed independently on separate micro-
controllers. Therefore, we have divided the jPapaBench code into
two virtual machines: the autopilot and simulator on one VM (as
disentangling the simulator and autopilot is rather complicated and

subtle), and the fly-by-wire unit on another. Communication be-
tween these VMs, simulating the serial interconnect bus, is accom-
plished via two wait-free pair transactions — one for each direction
of bus communication. There is an additional WFPT providing fly-
by-wire command state to the simulator. Fig. 1 depicts the split of
core jPapaBench functionality into a multi-VM context.

3. WAIT-FREE PAIR TRANSACTIONS
In this section we outline the semantic properties of wait-free

pair transactions and their runtime complexity in terms of high-
level structures and operations. We provide encodings of these
structures and operations in the following section. At its core each
WFPT has a reader context and a writer context that correspond to
the reader and writer threads of execution, respectively. For WF-
PTs used for communication within a VM, these contexts are Java
threads or similar objects (e.g. RTSJ aperiodic event handlers).
Each context has a different set of capabilities that together form
a communication protocol. This protocol provides non-blocking
and safe communication between the contexts. The essential capa-
bilities of each context are provided by two primitive operations on
the WFPT object, commit and update. WFPTs provide their guar-
antees through the use of object replicas and a precise protocol used
to manage the replicas. We first discus the capabilities of the reader
and writer and then show at a high level how these capabilities are
provided by the replicas.

A writer on a wait-free pair transaction has the following capa-
bilities:

• The writer can both read from and write to the object being
communicated by the WFPT.

• The writer never loses coherence — anything previously writ-
ten will be seen by the writer in subsequent reads until that
value is overwritten by the writer itself.

• The writer never blocks on the reader, regardless of the state
of the reader.

• The writer can commit its changes to the object stored in the
WFPT at any time, causing them to become visible to the
reader the next time the reader requests an update.

• Changes to the object stored in the WFPT will never be vis-
ible to the reader unless the changes are subsequently com-
mitted.

• The writer can read and write to the object stored in the
WFPT in O(1) time, regardless of concurrent activity by the
reader.

A reader on a wait-free pair transaction, on the other hand, has
the following capabilities:

• The reader can read from the objected bring communicated
by the WFPT.

• The reader can also write to the object stored in the WFPT,
but the writes will be lost when it performs an update. None
of the reader’s writes ever become visible to the writer.

• The reader never loses coherence unless it does an update;
in the absence of updates, any value previously written will
be seen in subsequent reads until that value is overwritten by
the reader itself.

public class WaitFreePairTransaction {
public WaitFreePairTransaction() { }

public final void commit() { }
public final void update() { }

public final void setReader(Object reader) { }
public final void setWriter(Object writer) { }

}

Listing 1: The wait-free pair transaction base class

• The reader does not see updates from the writer unless the
writer does a commit and the reader does a subsequent up-
date.

• The reader never blocks on the writer, regardless of the state
of the writer.

• All reads and writes to the object stored in the WFPT are
O(1) regardless of concurrent activity in the writer.

The reader context is allowed to modify the object stored in the
WFPT to perform local computations on the object itself without
necessitating a copy of that object. Notice that the writer con-
text cannot invalidate this object unexpectedly as the reader is re-
quired to perform an update to receive the writer’s most up to date
changes. As such, the reader controls when its copy is updated.
This has two benefits: the aforementioned safety and consistency,
as well as not requiring pervasive changes to a system that uses WF-
PTs. A reader and any computation that it performs does not need
to create and manage copies of the objects communicated through
the WFPT.

As these capabilities suggest, the interface to the conceptual trans-
action provided by the WFPT is given through low-level calls to
commit and update as well as a special object representation for
WFPT objects. Every WFPT object extends the WaitFreePair-
Transaction base class, shown in Listing 1. These objects are
treated specially by the compiler and runtime. WFPT objects log-
ically contain four versions of the object that the reader and writer
contexts manipulate, which we call replicas, along with some track-
ing information. Appropriate manipulations of these replicas and
information are used at runtime to provide transactional semantics.

Compiler and VM support for the special object representation
used by WFPT objects is required to achieve transparent field ac-
cess with WFPT guarantees. The purely transactional semantics
of WFPT objects can be provided without compiler and runtime
support, provided that the reader and writer contexts manage the
object replicas explicitly. However, this approach is much more in-
volved and error-prone than compiler- and runtime-assisted WFPT
objects.

3.1 Tracking Structures
To achieve non-blocking communication between the contexts

in a predictable fashion, WFPT objects use replication. The WFPT
structure is shown in Fig. 2. Each WFPT object contains four dis-
tinct replicas, labeled as W , F , U , and R in the figure. Thus, WFPTs
will operate over four copies of the data being communicated be-
tween contexts. These replicas are created when the WFPT object
is allocated.

The WFPT tracking structure maintains four logical indices for
each WFPT replica, one corresponding to each replica created at
initialization time, as well as an update flag indicating whether the
writer has committed a version not yet updated by the reader. These

W RUF

Modifiable Readable
Modifiable

Readable
Modifiable

Writer Reader

Figure 2: The structure of a wait-free pair transaction consist-
ing of four replicas W , F , U , and R.

Writer Reader
Obj. Ind. Obj. Ind.

W RM R - -
F M RM - -
U - RM - RM
R - - RM RM

Table 1: Access rights allowed to each context on the four object
copies and their indices. See text.

indices are used to identify which objects are safe to modify and
read by the two contexts utilizing the WFPT. The four indices are:

1. W : The version currently being modified by the writer,

2. F : The version that will receive the writer’s next commit,

3. U : The version the reader will read from after it performs an
update, and

4. R: The version currently being read by the reader.

Only the writer can read or modify the objects at indices W and
F , and only the reader can read or modify the object at index R.
Neither context can read or modify the object at index U . Table 1
lists the access rights that each context has for the object at each
index, as well as the index itself. The letter ’R’ is used to indicate
read access, ’M’ modify access, and ’-’ indicates that the specified
context has no rights on a given object or index. The key obser-
vation is that the object replica at the index U is not accessible to
either the reader or writer contexts. This replica provides a bridge
between the reader and writer contexts and is key to providing data
consistency as it guarantees both data consistency and repeatable
reads. The other indices provide non-blocking guarantees as well
as the time complexity guarantees for WFPTs.

3.2 Performing Commits and Updates
Careful reassignment of the four indices maintained in the WFPT

tracking structure is used to encode the commit and update opera-
tions. Rules about which context can modify which indices ensure
O(1) manipulation of the index fields. These two basic operations
are detailed below and shown graphically in Fig. 3 and Fig. 4.

The commit operation is performed by copying the contents of
the object at index W to the object at index F , and then atomically
swapping the indices of F and U and setting the update flag. Be-
cause only the writer can access the object at F , the object copy
is not visible to the reader. Because neither context can access the
object at U , the committed object is not visible to the reader until it
performs an update. After this operation, the object at F is ready to

A B C D

W RUF

Replica State Prior to Commit

A A C D

W RUF

Replica State After Commit Phase I

A C A D

W RUF

Replica State After Commit Phase II

copy

swap

Figure 3: The phases of a wait-free pair transaction commit
operation. In the first phase the committed objects is copied
from W to F . In the second phase the objects in F and U will be
swapped atomically.

A B C D

W RUF

Replica State Prior to Update

A B D C

W RUF

Replica State After Update

swap

Figure 4: The phases of a wait-free pair transaction update op-
eration. In the first phase the reader check to see if the update
flag has been set. In the second phase the reader swaps the
objects in R and U .

receive the next commit by the writer, and the object at U is ready
to become the read object when the reader performs and update.

The update operation is similar, but comparatively simpler. The
reader first checks the update flag; if it is not set, no action is taken.
If it is set, the update is performed by atomically swapping the
values of R and U and clearing the update flag. The safety of this
operation is guaranteed by the fact that the writer cannot access
either R or U , similar to the writer’s manipulations above. After
this operation, the object at R represents the writer’s most recent
commit and the object at U is stale and will not be used until the
writer commits and it is moved to F .

3.3 Accessing WFPT Fields
Access (both reading and writing) to fields of the WFPT must

use the appropriate copy. In order to accomplish this, the compiler
must insert read and write barriers for WFPT fields. These barri-
ers use the WFPT tracking structure to determine whether the cur-
rent context is a reader or writer, and look up the appropriate copy
via the R or W index as appropriate. Because WaitFreePair-
Transaction is a base class, and not an interface, this check
needs only be performed for objects that are known at compile time
to be WFPTs, incurring no extra cost for non-WFPT objects.

Static fields on a WFPT object are not protected by WFPT se-
mantics. The strict one-way communication and one-to-one con-
text relationship limit the usefulness of static fields for communi-
cation. Rather than tackle the added complexity and restrictions
involved with ensuring the integrity of static fields in the face of
multiple object instantiations with potentially dissimilar read and
write contexts, static fields are simply removed from consideration.

3.4 WFPT Overhead
For the higher-priority context on a WFPT, every operation ex-

cept update is constant-time, including field accesses. An update
is linear in the size of the WFPT object, due to the necessary copy
from the object at W to the object at F (as described in Section 3.2).
Moreover, all field and method accesses proceed in time completely
independent of the lower-priority context. The atomic operations
necessary for index updates may cause commit and update to expe-
rience tightly bounded blocking, depending on implementation de-
tails, but this can be avoided through the use of hardware-assisted
compare-and-swap (CAS) operations.

4. IMPLEMENTING WFPTS
We have implemented wait-free pair transactions in the Fiji VM [13]

and associated compiler. The implementation provides all of the
semantics described in Section 3, including non-blocking commit
and update using hardware CAS. Modifications to the compiler
are minimal and non-invasive, and modifications to the runtime are
limited to a single check in reflective object instantiation and two
new classes (one empty base class and one helper class to store the
tracking information for each WFPT object).

Instantiations of WaitFreePairTransaction objects are
represented at runtime by their tracking object, with all references
to the WFPT object replaced by the tracking object, called WFPT-
Proxy, after initialization. This necessitates insertion of some ex-
tra compiler barriers (e.g., for type casts) but simplifies other oper-
ations and requires no extra fields to be stored on the user’s Wait-
FreePairTransaction object.

The tracking object structure is given in Fig. 5 and consists of
an index word and a replica array. Not shown are fields to store
the context identifiers (e.g., Thread references), as their use is
uninteresting. The replica array conceptually stores the replicated
WFPT object. The index array encodes indices to the W , F , U , and
R replicas within the replica array, as well as the update flag. To be
able to perform one CAS to swap indices, all WFPT metadata must
be encoded into one word. This packing is achieved by placing
all four indices and the update flag in a single index word. As the
range of each index is only 0–3, two bits will suffice for each index
(for a total of eight bits), and the update flag requires only one extra
bit.

4.1 Compiler Changes
Instrumentation was added to the Fiji VM compiler to insert var-

ious barriers and instrumentation in the generated code to provide
WFPT semantics. These fall broadly into four categories:

Flag

1 bit 2 bits2 bits2 bits2 bits

W
Index

F
Index

U
Index

R
Index Unused

7 bits

Replica Array

Figure 5: The low level structure of a wait-free pair transaction
consisting of and index word encoding the update flag and in-
dices to the four replicas W , F , U , and R. The four replicas are
stored in a replica array.

• Tracking structure allocation to ensure that a WFPT tracking
structure, WFPTProxy, is created and initialized for each
instantiation of a WFPT object and used in its place,

• Method lookasides to replace the empty methods on the WFPT
base class with their implementations,

• Cast replacements to handle casting of WFPTProxy object
references as the objects they represent, and

• Access barriers to perform reader/writer context lookups and
redirect field accesses to the appropriate object replica.

These modifications are less than 500 lines (excluding documen-
tation) of almost entirely self-contained compiler code. No changes
are required to the existing compiler code aside from a small num-
ber of convenience references in a helper class and an explicit live-
ness determination for the WFPTProxy class (preventing it from
being prematurely removed from the build) if wait-free pair trans-
actions are in use.

Tracking structure allocation.
In order to allocate the tracking structure and object replicas,

the NEW and INVOKESPECIAL Java bytecodes corresponding to
allocation of a WFPT object and invocation of its constructor are
intercepted by the compiler. After constructor invocation, a WFPT-
Proxy object is allocated and initialized. Initialization of this ob-
ject includes allocation of memory for the object replicas and copy-
ing of the initialized object contents to the replicas at both the W
and R indices. The LHS of the NEW bytecode is then artificially
replaced with the tracking structure, so that all references to the
WFPT object will in fact be references to the tracking structure.

Method lookasides.
The WaitFreePairTransaction class provides four final

methods for manipulating WFPT state. However, for simplicity of
implementation specific to the Fiji VM, these methods are actually
provided by WFPTProxy. The compiler replaces the WaitFree-
PairTransaction method invocations with their WFPTProxy
equivalents.

Cast replacements.
Because the object reference used for WFPT objects is actually

a reference to an instance of WFPTProxy, casts to WFPT-derived

types that cannot be statically eliminated must be handled specially
at runtime. In addition, casts to interface types for which there ex-
ists at least one WFPT implementation must be handled similarly.
The compiler inserts a cast barrier for these operations that first
checks the object being cast to determine whether it is an instance
of WFPTProxy, and then casts either the object itself or the object
managed by the proxy as appropriate.

Access barriers.
The most frequent, and important, change emitted by the com-

piler is access barriers for WFPT object fields. These accesses re-
quire a lookup to determine whether the current context is a reader
or a writer on the WFPT being accessed (or neither, in which case
an exception is raised). Once the current context has been deter-
mined, the access can proceed on the replica indicated by either the
tracking structure’s W index or R index as appropriate. Because
WaitFreePairTransaction is a base class, these barriers are
inserted only for fields that are known, at compile time, to be WFPT
fields.

4.2 Runtime Support
Most of the real work to provide WFPT guarantees occurs in the

runtime via standard Java classes — indeed, compiler involvement
is only required because transparent field accesses are not other-
wise possible. Only one minor change is required in the existing
runtime libraries. The existing VM-specific implementation for
the Java Class class requires minor modification to the new-
Instance(Class<?>) method to ensure that tracking struc-
tures are created and properly initialized for reflective instantiation.

The WFPT tracking structure and various support methods are
provided by the class WFPTProxy. This class implements the
commit, update, setReader, and setWriter methods, as
well as several methods to assist with type casts. The context man-
agement methods are straightforward, owing to an implementation
restriction that forbids changing contexts after their initial config-
uration. This restriction eliminates the need for internal synchro-
nization for the setReader and setWriter methods and sim-
plifies their implementation. However, careful implementation of
the commit and update operations is essential to avoiding block-
ing in the higher-priority context. We will consider each of these
operations, and the necessary data structures, in turn.

Commit.
The commit method, implementing the commit operation on

the WFPT, modifies the F object, the U and F indices, and the
update flag as described in Section 3.2. Fig. 6 shows the two phases
of the commit operation.

Because the reader context neither views the object at F nor
modifies the index F , copying of the W object to the F object can
proceed without regard to the reader’s state and without using any
sort of synchronization mechanism. Updating the indices, however,
is an operation that is visible to the reader and must be performed
either atomically or in a synchronized fashion. Careful placement
of the indices and flag allows a simple one-word atomic compare-
and-swap (CAS) operation to update both flag fields and the up-
date flag, and ensures that there is never a priority inversion, even
bounded.

A commit operation swaps the F and U fields in this word, sets
the update flag bit, and performs a CAS against the unmodified
value. Upon success, the commit is complete. Failure indicates
that the (necessarily higher priority) reader context preempted the
writer, and thus the U field may be dirty. Note that the F field
is unaffected, so no object copy need be repeated, and that this

0 00 01 10 11

Flag
W

Index
F

Index
U

Index
R

Index Unused

Replica Array

obj A obj B obj C obj D

Replica State Prior to Commit

0 00 01 10 11

Flag
W

Index
F

Index
U

Index
R

Index Unused

Replica Array

obj A obj B obj C obj D

Replica State After Commit Phase I

obj A

Replica State After Commit Phase II

1 00 10 01 11

Flag
W

Index
F

Index
U

Index
R

Index Unused

Replica Array

obj A obj C obj Dobj A

Figure 6: The phases of a wait-free pair transaction commit
operation at runtime. In the first phase the committed objects
is copied from W to F . In the second phase the objects in F and
U are swapped atomically.

situation can arise only if there is an outstanding commit that has
not yet been updated (and thus the update flag bit is set). The writer
context simply recomputes the index word with the new value for
U and tries again until the CAS succeeds.

Update.
The update method is similar, but less complicated. Because

no object copy is required for update, the reader context simply

1 00 01 10 11

Flag
W

Index
F

Index
U

Index
R

Index Unused

Replica Array

obj A obj B obj C obj D

Replica State Prior to Update

0 00 01 11 10

Flag
W

Index
F

Index
U

Index
R

Index Unused

Replica Array

obj A obj B obj C obj D

Replica State After an Update

Figure 7: The phases of a wait-free pair transaction update op-
eration. In the first phase the reader check to see if the update
flag has been set. In the second phase the reader swaps the
objects in R and U .

checks the update bit in the index word and, if it is set, swaps the
R and U field, clears the update bit, and issues a CAS against the
stored previous value of the index word as shown in Fig. 7. Success
indicates that the update is complete, and failure indicates that there
was a commit/update collision and the new index word must be
recomputed and the CAS retried until it succeeds.

The existence of the fourth F field and the non-shared U field
(and corresponding replicas) enable the guarantee that a success-
ful update operation in this implementation will always leave the
R index pointing to the previously committed, consistent object or
the most recently committed, consistent object even in the face of
a commit/update race. Because neither the reader nor writer con-
text can access the object at U without first using a CAS to move
it to R or F , respectively, the reader will never have access to an
inconsistent object.

Predictability.
Predictability is directly related to the the collision rate of the

commit and update operations. This rate itself depends on the rate
of the individual commit and update operations performed by the
writer and reader, respectively. Using strong CAS operations on a
single-processor system, the lower priority context cannot cause a
CAS failure in the higher priority context under the implementation
described here. The higher priority context, however, can cause
CAS failures (and thus retries) in the lower priority context. As a
practical matter, the window for this is very narrow (a few machine

instructions), so repeated failures are likely to be an indication of
an erroneous application. In a well-behaving application, the higher
priority context should succeed immediately on commit or update,
and the lower priority should retry its CAS at most once.

Interactions with Automatic Memory Management.
The design of WFPTs makes them amenable to garbage collec-

tion as the WFPT object is managed as a single, albeit complex,
object. No changes were necessary to support WFPTs in Fiji VM’s
GCs [12] for WFPT used within a single VM. Careful consider-
ation, however, needs to be given for WFPTs that facilitate com-
munication between partitions in a mixed-criticality system. Sec-
tion 5.1 describes this in more detail.

4.3 Optimization of WFPT Accesses
The wait-free pair transaction implementation examined here is

entirely unoptimized. In particular, context lookups are performed
for every object field access. We anticipate that many such lookups
could be elided by an optimizer in a manner similar to type checks,
but we have not yet implemented this optimization. Optimized con-
text lookups have the potential to reduce WFPT field access over-
head to zero (compared to general object field accesses) for entire
methods, loops, or call graphs. This optimization could also im-
prove transaction performance, but in the general case we would
expect field access to dominate transaction operations in number.

The semantics of WFPT objects provide an optimizer with, in
some ways, an easier problem than type cast elision. Since a given
thread can be only one of the reader or writer context on a WFPT
object, and there is exactly one reader and one writer for any given
WFPT object, repeated accesses to the same object in a call graph
are ensured to be in the same context. Furthermore, the update
and commit operations are performed by the VM infrastructure,
and known to the compiler, so the compiler is aware of potential
changes to the WFPT state for a given context. Implementing these
optimizations, as well as other possible optimizations, is left for
future work.

5. INTER-PARTITION WFPT
Wait-free pair transactions generalize readily to communication

between partitions in a multi-VM or mixed-criticality system, if
the reader and writer contexts are represented by virtual machines
rather than threads. Their wait-free properties are particularly valu-
able for mixed-criticality settings, since the higher priority partition
is guaranteed constant-time interactions with the lower-priority par-
tition. Some extra precautions must be taken to ensure that parti-
tioning guarantees are not violated. The semantic differences be-
tween intra-partition WFPT and inter-partition WFPT are:

• The reader and writer contexts are represented by VM in-
stances. Any thread within a VM can access an inter-partition
WFPT object according to the VM’s context. The application
must use synchronization if it requires consistency between
accesses in the face of multiple threads accessing the same
WFPT.

• Care must be taken to maintain spatial partitioning as well.
In this work we solve that by allowing only primitive objects
to serve as inter-partition WFPTs. A primitive object, in this
context, is an object which has only primitive fields. This
prohibits inter-partition WFPTs containing references or ar-
rays, although this restriction could be relaxed for arrays of
primitives under certain circumstances.

• Static fields are not only not subject to WFPT semantics, they
are not shared between VMs. This restriction avoids poten-
tial inter-VM interactions related to static initializers.

5.1 Referential Integrity
References to objects visible in multiple VMs must be ensured

referential integrity in each VM. The restriction to primitive objects
for inter-partition WFPTs frees the infrastructure from tracking ref-
erences stored in the WFPT, but references to the WFPT must still
be protected. Our implementation handles this by storing inter-
partition WFPTs in a memory scope (similar to those defined by the
Real-Time Specification for Java [7] and Safety Critical Java [15])
that is maintained by the multi-VM infrastructure and effectively
immortal from the point of view of both VMs.

The infrastructure must also provide a way to transport refer-
ences between VMs in a safe fashion. In the Fiji VM implemen-
tation, VMs declare their intention to use an arbitrary number of
inter-partition WFPT objects (limited by available memory), along
with their type, the reading and writing VMs (by name), and an
identifying number. The infrastructure allocates and initializes these
objects in the shared immortal memory space, then each VM re-
quests the objects it declared by an identifier assigned at declaration
time.

5.2 Type System Reconciliation
Sharing type systems between virtual machines in a multi-VM

has challenges in a mixed-criticality environment. These challenges
range from tracking static initialization status across VMs in an effi-
cient manner to adding classes without potentially triggering prior-
ity inversions between VMs. Rather than tackle all of these issues,
we chose to extend the WFPT-specific type cast instrumentation in
the compiler and runtime to handle cross-partition casts and refer-
ences.

This approach requires a small number of straightforward re-
strictions:

• A shared inter-partition WFPT object must have the same
fields in both VMs. Multi-VM infrastructure handles field
copying, so they need not have identical object model or lay-
out, but our preliminary implementation also requires this.

• The WFPTProxy class must have the same fields, object
model, and field layout in both VMs. This object is pro-
vided by the multi-VM infrastructure, so this requirement is
necessarily met.

• The WFPTProxy class type record must have the same in-
memory layout in both VMs. This is also satisfied by provid-
ing its implementation in the multi-VM.

Object headers are carefully manipulated at WFPT creation time
such that the inter-partition WFPT objects manipulated in each VM
always present the type system header appropriate for the current
context. This is accomplished by placing a writer VM type header
on the object at W (which never moves) and a reader VM type
header on the other three copies of the object. Since the multi-VM
infrastructure handles copying between these objects, their type
header mismatch can be handled there as necessary.

The WFPTProxy tracking structure (arbitrarily) carries a type
header from the writer VM. The type casting infrastructure cannot
therefore use the type system’s fast path casting for WFPTProxy
objects. Instead, casts involving this class consult the object’s type
record directly and compare its canonical name representation for
equivalence. This simple cast technique is suitable only because
WFPTProxy is final, system-provided, and directly accessed only
in well-defined circumstances.

6. EVALUATION AND RESULTS
We evaluate WFPT performance and suitability for intra- and

inter-VM communication using both micro-benchmarks and jPa-
paBench (see Section 2 for more information on jPapaBench). We
evaluate our implementation of WFPTs on two hardware platforms:
a Raspberry Pi and a LEON3 development board.

The Raspberry Pi represents a small, general purpose computing
platform dedicated to a single real-time task. The system used in
our experiments is a Model B revision 2, which has a 700 MHz
ARM v6 processor and 512 MB of RAM running Linux 3.2.x.
No software other than critical system daemons (e.g., dhclient,
udevd, sshd) are running during the tests, and no other processes
on the system are configured with real-time priorities. The test bi-
naries run with real-time priority using the FIFO scheduler.

The second configuration is targeted at moderately resource con-
strained embedded systems. For this configuration we leveraged
a stock LEON3 embedded board manufactured by Gaisler. The
experiments were run on a GR-XC3S-1500 LEON development
board 2 running RTEMS version 4.9.6. The board’s Xilinx Spartan
6 Family FPGA was flashed with a LEON3 configuration running
at 40Mhz. The development board has an 8MB flash PROM and
128MB of PC133 SDRAM. The test builds use the FIFO scheduler.

6.1 WFPT Overhead
Wait-free pair transactions incur no overhead for any operations

other than WFPT field accesses, transaction operations, and checked
casts to WFPT types or interfaces implemented by a WFPT. Be-
cause type casts are both infrequent and aggressively optimized in
the Fiji VM, we consider only WFPT field access and transactions
in our evaluation. These operations are compared to roughly equiv-
alent monitor synchronized communication to establish a baseline
for comparison and to characterize WFPT overheads. As men-
tioned in Section 4.3, no optimization of context lookup for WFPT
field access has been performed in the current implementation.

The micro-benchmark for this evaluation considers a worst-case
scenario for both monitors and wait-free pair transactions. For the
monitor baseline benchmark, the test apparatus repeatedly calls the
following method:

public synchronized void set(int value) {
this.value = value;

}

This method incurs a monitor lock and unlock for every field
store. Similarly, the WFPT benchmark apparatus repeatedly calls
the following function in the writer, with or without an immediate
commit:

public void set(int value) {
this.value = value;

}

This incurs a WFPT context lookup for every field store. For ex-
periments exercising commits, there is a commit immediately fol-
lowing invocation of this function on every iteration. Note that this
method is identical to the method used for monitor evaluation, ex-
cept without the synchronized keyword on the method.

Each micro-benchmark runs the aforementioned methods ten mil-
lion times, timestamping before and after the sequence of invo-
cations with nanosecond timestamps. The actual precision of the
timestamp is dependent on the platform; on the Raspberry Pi, it is
reported to be 1 ns3, and on the LEON3 it is 100 µs. This trial is
repeated ten times, and the results of the first trial are discarded.

2Additional board specification can be found at Gaisler’s website:

Configuration ARM LEON3
Monitors 123 5107
WFPT 260 6557
WFPT w/ Commit 653 14107

Table 2: Mean per-iteration duration of each micro-benchmark
configuration. All times are in nanoseconds.

Table 2 shows the mean per-iteration duration of three different
micro-benchmark configurations on both platforms. The three con-
figurations are: the monitor-guarded update, WFPT field update,
and WFPT field update with commit. Note that the granularity of
timings requires a large number of iterations to achieve meaningful
results, so per-iteration jitter is not readily available without hard-
ware assistance. However, jitter from trial to trial (trial durations
are well over one minute) is low enough on the LEON3 that the
100 µs timer granularity becomes problematic. Jitter on the Rasp-
berry Pi is larger, as is typical on non-RTOS systems.

These trials do not include contention (in the form of a second
thread locking the monitor or a reader on the WFPT), as on these
single-core processors there is not a good way to distinguish be-
tween time used by the contending thread versus the trial thread
without significantly higher-precision timestamps. We did, how-
ever, perform tests with very sparse contention from a higher-priority
thread to ensure that no pathological effects emerged, and no such
effects were observed. Trial durations were slightly extended by
contention for the processor, which is not surprising.

We do not consider reader access to WFPTs in this performance
evaluation for practical reasons. First, field access follows the same
code path between reader and writer. Second, the update opera-
tion is strictly less complex than the commit operation, as the CAS
phase is equivalent and update does not require an object copy.
Finally, update is short-circuited in the event that the update flag
is not set, so timing an update operation requires a corresponding
commit, and either timing a single update or disentangling the up-
dates from commits in multiple iterations are problematic for the
reasons discussed above.

Our conclusion from these results is that while WFPT object
field access is slower than standard object field access with mon-
itor guards, and WFPT transactions are slower than monitor in-
teractions, the cost is moderate enough to justify the use of WF-
PTs where blocking for synchronization cannot be tolerated. For
this worst-case scenario for both WFPTs and monitors, the cost of
WFPT field access is only about twice that of a monitor-protected
interaction on ARM (and far less on LEON3), and the cost of ac-
cess plus the transaction itself is about six three times the monitor-
protected interaction on ARM, and only three times on the LEON3.
The unoptimized implementation of WFPTs will fall behind moni-
tors as the number of field accesses is increased, but optimizations
as discussed above should mitigate that to a great extent.

6.2 WFPTs in Multi-VM jPapaBench
We have implemented a multi-VM version of jPapaBench, as de-

scribed in Section 2. The details of the division and the associated
wait-free pair transaction objects are provided here, as well as some
performance data.

As previously described, communication between the jPapaBench
autopilot and fly-by-wire modules is via a simulated serial bus, and

http://www.gaisler.com/.
3Our experiences with Linux have yet to produce such precision in
the timing data. In this case, the data suggests approximately 1 µs
effective timestamp precision.

1

10

100

1000

10000

100000

0 50 100 150 200 250 300 350

N
um

be
ro

fr
el

ea
se

s

Release duration (µs)

Plain Java
Multi-VM

Figure 8: Multi-VM and plain Java jPapaBench release times
for the Stabilization task. Release durations are rounded to the
nearest microsecond.

our multi-VM implementation transports this communication via
two inter-partition WFPT objects, one for each direction of commu-
nication. These two WFPTs are identical, carrying the fixed-format
data record exchanged on the serial bus. This data consists of four
bytes of status information and nine words of data received on the
fly-by-wire module’s radio interface and relayed to the autopilot.
This mirrors the existing implementation of queue-based commu-
nication in the plain Java jPapaBench code. The WFPT carries an
additional serial number, incremented by the writer prior to each
commit and used by the reader to determine whether the writer has
sent new information via the WFPT, and a boolean flag used for
convenience in the reader and ignored by the writer.

A third wait-free pair transaction, communicating between the
fly-by-wire module and the simulator, carries the raw radio data
received by the fly-by-wire plus an extra boolean flag added so the
reader can tell when new data has arrived. This flag is set by the
writer on each commit and cleared by the reader after the data has
been viewed. A successful update will therefore re-set the flag,
letting the reader know that new data has arrived.

Each of these structures contains a small amount of metadata (the
serial number on serial bus data packets, and the boolean flag on the
radio commands structure) to help the reader determine whether a
commit has occurred. This illustrates a generally useful technique
for using wait-free pair transactions between VMs, where no stan-
dard Java mechanism exists for asynchronous notification of the
commit. In the case of serial numbered commits, the reader sim-
ply notes the current serial number in a local variable, performs an
update, and then compares the new number with the old. If serial
numbers are sequentially assigned, this can also indicate whether
commits were “lost” by the reader. Indication of whether a commit
has occurred can be communicated via a return value on update,
which is an improvement we will implement going forward.

Multi-VM jPapaBench was exercised via the flight plans dis-
tributed with the benchmark, and did not display any behaviors
incompatible with the plain Java implementation. No missed dead-
lines were detected on either the Raspberry Pi or LEON3, and mis-
sion objectives were either achieved or failed as expected.

Fig. 8 shows a collection of releases of a single representative
jPapaBench task in both the plain Java and multi-VM implementa-
tions. The selected task, the stabilization task in the autopilot mod-
ule, communicates with the fly-by-wire module via the simulated
serial bus, and thus uses an inter-partition WFPT in the multi-VM

implementation. The jPapaBench plain Java and multi-VM imple-
mentations were run 10 times each, in alternation, on the Raspberry
Pi4 and the first run of each implementation was discarded. Release
durations for the Stabilization task were aggregated across the nine
remaining trials, rounded to the nearest 1 µs, and the frequency of
each duration is plotted in the figure. From Fig. 8 it is clear that the
multi-VM implementation increases the duration of each release by
about 25 µs, but the distribution of durations is otherwise little af-
fected. In this particular task, 25 µs is roughly the duration of the
shortest plain Java releases, and three orders of magnitude faster
than the period of this task. Other tasks in the system interacting
with WFPTs display similar results and are not shown here.

This exercise of dividing jPapaBench into a multi-VM system
demonstrates that inter-partition WFPTs are realistic for safe, pre-
dictable inter-VM communication with no blocking between VMs
in a real Java application. The results suggest that practical perfor-
mance of inter-partition WFPTs is suitable for moderately complex
communication when non-blocking operation is desirable.

7. RELATED WORK
There has been a lot of work on real-time Java [3, 2, 4, 13],

the Real Time Specification for Java (RTSJ) [7], and Safety Criti-
cal Java (SCJ) [15]. We believe wait-free pair transactions can be
used by a Java VM wishing to provide a predictable communication
mechanism. Specifically, we believe WFPT will be particularly
useful for VMs supporting mixed-criticality execution models.

Recently software transactional memory [17, 8, 18] has emerged
as an alternative concurrency control mechanism to locking. STM
prevents common locking errors such as deadlock and has been uti-
lized to prevent priority inversion [20]. Unfortunately, such tech-
niques are inherently unpredictable since the underlying systems
also utilize transactions for concurrency control resulting in aborts
due to failed speculation. The most closely related is work on pre-
emptible atomic regions, discussed in more detail below.

Priority rollback protocol (PRP) [21] has been proposed as a fast
and predictable alternative to the priority inheritance protocol [6,
16] or priority ceiling protocol [5]. PRP relies on transactional
tracking structures for all reads and write performed while hold-
ing a lock. High priority threads can safely acquire the lock, even
if a low priority thread has not completed its critical section. Like
WFPTs, PRP can be leveraged to implement communication pro-
tocols between threads. However, WFPTs never require unrolling
and re-executing code and offer tighter predictability bounds at the
cost of a less general interface.

Preemptible atomic regions, or PARs [10] are low-latency syn-
chronization primitives for real-time systems and have been imple-
mented in OVM [4]. PARs have shown better latency performance
than traditional locking in substantial benchmarks derived from ac-
tual flight software. PARs allow for a critical region protected by
a PAR to be reverted if a higher priority thread attempts to enter
another critical region also protected by a PAR, in much the same
fashion that a low priority thread executing within a critical region
protected by a PRP lock can be rolled back. This ensures that a
high priority thread can execute its critical region with extremely
low latency. Unlike WFPTs, PARs introduce a new programming
model requiring programmers to explicitly juggle locks and PARs.

WFPTs, unlike each of the foregoing techniques, focus only on
predictable communication between threads and do not provide
a general purpose concurrency control mechanism. Although we
can envision building WFPT-like mechanisms from a more robust
concurrency control mechanism like STM, PRP, or PARS, WFPTs

4Timing precision on the LEON3 did not allow meaningful results.

have no impact on the overall programming model and have modest
runtime overheads due to their specialized nature.

There have been many mechanisms that support various types of
message passing, including synchronous [14], asynchronous [11],
and heterogeneous [22]. We expect to be able to encode higher-
level message passing primitives with precise predictability guar-
antees using WFPTs.

7.1 Simpson’s Four-Slot Mechanism
Simpson presents a four-slot mechanism [19] that shares the goals

of wait-free pair transactions. Like WFPTs, the four-slot mecha-
nism also uses four communication “slots” (which do not neces-
sarily contain object replicas, but may) and two one-bit fields to
implement a protocol that cooperatively determines which of the
slots are currently in use by the reader or the writer. As presented,
the four-slot mechanism is not directly suitable for WFPT seman-
tics, as it provides coherence but not persistence for the write ob-
ject — that is, the writer “loses” the state it wrote after each write.
However, the data visibility mechanism represented in Section 4.3
of [19] could be used to provide the backing for a protocol with
equivalent semantics to WFPT at the cost of an extra object replica.

8. CONCLUSION AND FUTURE WORK
In this paper we introduced the design of a new, predictable com-

munication mechanism for real-time systems called wait-free pair
transactions. WFPTs provide consistency without requiring block-
ing and have constant time overheads with bounded spatial con-
straints. We described a prototype implementation of WFPTs in the
context of Fiji VM. Our implementation supports WFPTs within a
single VM as well as across VMs in a multi-VM deployment.

The optimizations described in Section 4.3 remain for future
work. We anticipate greatly improved performance when accessing
WFPTs with multiple fields under such optimizations. The multi-
VM jPapaBench application, for example, uses WFPTs with ten or
more fields used in combination, so WFPTs with multiple fields are
a realistic use case. Other optimizations specific to inter-partition
WFPTs are possible, as well, such as partial type system reconcil-
iation between VMs to speed type casts and optimization of field
accesses based on the VM’s fixed reader/writer context with respect
to a given WFPT.

Inter-partition WFPT objects as implemented in this work can-
not contain array fields, including even arrays of primitives. This
restriction could be relaxed under certain circumstances, with prim-
itive arrays allocated out of the same immortal space as the WFPT
object and array reference assignments protected by a similar mech-
anism to SCJ or RTSJ scope checks.

Acknowledgments
We would like to thank Filip Pizlo for his work and input during
the development of the wait-free pair transaction model. Portions
of the WFPT implementation published here were produced under
NSF SBIR Award #1248583. All findings and opinions are those
of the authors, and are not supported or endorsed by the NSF.

9. REFERENCES
[1] Paparazzi project.

http://paparazzi.enac.fr/wiki/Main_Page.
[2] Aicas. JamaicaVM.

http://www.aicas.com/jamaica.html, 2010.
[3] Aonix. PERC Products.

http://www.aoinix.com/perc.html, 2010.
[4] Austin Armbruster, Jason Baker, Antonio Cunei, Chapman Flack,

David Holmes, Filip Pizlo, Edward Pla, Marek Prochazka, and Jan

Vitek. A real-time Java virtual machine with applications in avionics.
ACM Transactions in Embedded Computing Systems, 7(1):1–49,
2007.

[5] Albert M. K. Cheng and James Ras. The implementation of the
priority ceiling protocol in Ada-2005. Ada Letters, XXVII(1):24–39,
2007.

[6] J. B. Goodenough and L. Sha. The priority ceiling protocol: A
method for minimizing the blocking of high priority Ada tasks. In
Proceedings of the Workshop on Real-time Ada Issues, IRTAW ’87,
pages 20–31. ACM, 1988.

[7] James Gosling and Greg Bollella. The Real-Time Specification for
Java. Addison-Wesley Longman Publishing Co., Inc., 2000.

[8] Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice
Herlihy. Composable memory transactions. In Proceedings of the
Symposium on Principles and Practice of Parallel Programming,
PPoP ’05, pages 48–60. ACM, 2005.

[9] Tomas Kalibera, Pavel Parizek, Michal Malohlava, and Martin
Schoeberl. Exhaustive testing of safety critical Java. In Proceedings
of the Workshop on Java Technologies for Real-Time and Embedded
Systems, JTRES ’10, pages 164–174, 2010.

[10] Jeremy Manson, Jason Baker, Antonio Cunei, Suresh Jagannathan,
Marek Prochazka, Bin Xin, and Jan Vitek. Preemptible atomic
regions for real-time Java. In Proceedings of the Real-Time Systems
Symposium, RTSS ’05, pages 62–71, 2005.

[11] Vincenzo Nicosia. Towards hard real-time Erlang. In Proceedings of
the SIGPLAN Workshop on ERLANG, ERLANG ’07, pages 29–36.
ACM, 2007.

[12] Filip Pizlo, Lukasz Ziarek, Petr Maj, Antony L. Hosking, Ethan
Blanton, and Jan Vitek. Schism: fragmentation-tolerant real-time
garbage collection. In Proceedings of the Conference on
Programming Language Design and Implementation, PLDI ’10,
pages 146–159, 2010.

[13] Filip Pizlo, Lukasz Ziarek, and Jan Vitek. Real time Java on
resource-constrained platforms with Fiji VM. In Proceedings of the
Workshop on Java Technologies for Real-Time and Embedded
Systems, JTRES ’09, pages 110–119, 2009.

[14] John H. Reppy. Concurrent programming in ML. Cambridge
University Press, 1999.

[15] Martin Schoeberl, Hans Sondergaard, Bent Thomsen, and Anders P.
Ravn. A profile for safety critical Java. In Proceedings of the
Symposium on Object and Component-Oriented Real-Time
Distributed Computing, ISORC ’07, pages 94–101, 2007.

[16] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance
protocols: An approach to real-time synchronization. IEEE
Transactions on Computing, 39(9):1175–1185, 1990.

[17] Nir Shavit and Dan Touitou. Software transactional memory. In
Proceedings of the Symposium on Principles of Distributed
Computing, PODC ’95, pages 204–213, 1995.

[18] Tatiana Shpeisman, Vijay Menon, Ali-Reza Adl-Tabatabai, Steven
Balensiefer, Dan Grossman, Richard L. Hudson, Katherine F. Moore,
and Bratin Saha. Enforcing isolation and ordering in stm. SIGPLAN
Not., 42(6):78–88, 2007.

[19] H. R. Simpson. Four-slot fully asynchronous communication
mechanism. IEE Proceedings, 137(1):17–30, January 1990.

[20] Adam Welc, Antony L. Hosking, and Suresh Jagannathan.
Preemption-based avoidance of priority inversion for Java. In
Proceedings of the Conference on Parallel Processing, ICPP ’04,
pages 529–538, 2004.

[21] Lukasz Ziarek. PRP: priority rollback protocol — a PIP extension for
mixed criticality systems: short paper. In Proceedings of the
Workshop on Java Technologies for Real-Time and Embedded
Systems, JTRES ’10, pages 82–84, 2010.

[22] Lukasz Ziarek, KC Sivaramakrishnan, and Suresh Jagannathan.
Composable asynchronous events. In Proceedings of the Conference
on Programming Language Design and Implementation, PLDI ’11,
pages 628–639, 2011.

[23] Lukasz Ziarek, Adam Welc, Ali-Reza Adl-Tabatabai, Vijay Menon,
Tatiana Shpeisman, and Suresh Jagannathan. A uniform transactional
execution environment for Java. In Proceedings of the European
Conference on Object-Oriented Programming, ECOOP ’08, 2008.

