
JI.FI : Visual Test and Debug Queries for Hard Real-Time

Ethan Blanton1 Demian Lessa2 Lukasz Ziarek1,2 Bharat Jayaraman2

Fiji Systems Inc.1 SUNY Buffalo2

{elb, luke}@fiji-systems.com {dlessa, lziarek, bharat}@buffalo.edu

ABSTRACT
Hard real-time systems have stringent timing and resource require-
ments. As such, debugging and tracing such systems often requires
low-level hardware support, and online debugging is usually pre-
cluded entirely. In other areas, visual debugging has greatly im-
proved program understanding and late cycle development times
for non real-time applications. In this paper we introduce a visual
test and debug framework for hard real-time Java applications built
around the JIVE platform and realized in the Fiji VM.

Our framework, called JI.FI ["dZIfi], provides high-level debug-
ging support over low-level execution traces. JI.FI provides both
powerful visualizations and real-time centric temporal query sup-
port. To ensure preservation of the real-time characteristics of the
application being tested and debugged, JI.FI leverages a real-time
event log infrastructure that logs only relevant application and vir-
tual machine level events, such as synchronization and modifica-
tions to priorities or thread state. Our performance results indicate
that our logging infrastructure is suitable for hard real-time sys-
tems, as the performance impact is both uniform and quantifiable.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: Real-
time and embedded systems; D.2.5 [Software Engineering]: Test-
ing and Debugging—Debugging Aids

General Terms
Design, Measurement, Performance

1. INTRODUCTION
Debugging hard real-time embedded systems is notoriously dif-

ficult, as such systems have stringent performance and correctness
requirements that often preclude the use of standard debugging
techniques for late-cycle debugging. For instance, a standard sym-
bolic debugger, like GDB [10] or JDB [11], is not well suited for
discovering timing errors as the debugger itself can significantly al-
ter the program’s schedule and runtime characteristics. As a result,
the error the programmer is trying to isolate may not manifest itself

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JTRES 2012 October 24-26, 2012, Copenhagen, Denmark
Copyright 2012 ACM 978-1-4503-1688-0 ...$15.00.

in the debugging run or may be incorrectly deduced due to altered
timing characteristics.

Debugging via print statements or log dumps, a standard alter-
native to symbolic debuggers, necessarily entails extensive I/O or
results presented information of very low bandwidth. Inexpen-
sive hardware signals (such as the clichéd but still popular blink-
ing light(s)) also suffer from low bandwidth. Due to this cost-to-
bandwidth trade-off, pervasive print statement-style debugging is
often not realistic, and statements must be inserted and removed as
a bug is tracked and eventually isolated.

With these considerations in mind, debugging of real-time em-
bedded systems usually occurs at two granularities: high-level ver-
ification through system models and specifications (WCET anal-
ysis [36], schedulability analysis [28], etc.), and low-level debug-
ging strategies. Classic debugging of real-time systems necessitates
a low-level approach of print statements and log dumps, requiring
hardware support to be effective. This support is realized in the
form of specific logic for capturing and filtering traces (logs), as
well as buffers to store the trace itself. Unfortunately, such a setup
only supports offline debugging via stored hardware traces.

The loss of online symbolic debugging with breakpoints, stop-
and-examine capabilities, and direct manipulation of program state
due to real-time requirements creates a need for a replacement de-
bugging technology. Pervasive software tracing with predictable
performance coupled with offline tools capable of reconstructing
detailed, symbolic debugger-style call graphs and symbolic traces
can help fill this need. Although many tools exist to help real-time
embedded systems developers early in the software life-cycle, for
instance to help debug models [19], only a handful of tools exist
for late life-cycle debugging [5].

In this paper we present the following contributions:

1. A visual debugging tool, JI.FI, for Java based, hard real-time
embedded systems on the JIVE [14, 13] debugging platform.

2. A JVM independent, light-weight logging format to gather
relevant debugging information for a given execution run.
Unlike standard Java debug logging formats, the event log
can be gathered in real-time.

3. A real-time aware temporal query processing engine able to
answer temporal queries about the execution of the program.

4. A detailed performance evaluation of the JI.FI system.

2. MOTIVATING EXAMPLE
Real-time systems are usually concurrent, relying on multiple

threads of control. When these threads execute with differing prior-
ities, programs and runtimes must provide assurances against pri-
ority inversion, the situation where a low priority thread holds a
resource that a high priority thread requires, preventing it from run-
ning. We call such assurances priority inversion avoidance proto-

1 class HelloThread {
2 public static int[] l = { 0 };
3 public static int[] b = { 0 };
4

5 private static class HT extends Thread {
6 public void run() {
7 System.out.println("Hello world!");
8 synchronized (l) {
9 synchronized (b) {
10 b.notify();
11 }
12 Thread.sleep(50);
13 }
14 System.out.println("Goodbye world!");
15 }
16 }
17

18 public static void main(String args[]) {
19 HT t = new HT();
20 Thread.currentThread().setPriority(5);
21 synchronized (b) {
22 t.start();
23 b.wait();
24 }
25 synchronized (l) {
26 t.join();
27 }
28 }
29 }

Listing 1: An interesting example of thread interactions. Error
checking has been removed from this example for clarity.

cols. Such protocols, like priority inheritance protocol (PIP) [16,
33], prevent unbounded priority inversion. Using PIP, when a high
priority thread attempts to acquire a shared lock held by a low pri-
ority thread, the low priority thread is temporarily boosted to the
priority of the higher priority thread until it has completed its crit-
ical region. PIP prevents unbounded priority inversion by disal-
lowing intermediate priority threads from executing. When the low
priority thread has completed, its priority is returned to normal and
the high priority thread can acquire the contended resource.

Although detecting and testing for priority inversion in a real-
time system is well-understood, understanding the timing effects
of priority inversion avoidance mechanisms on a program schedule
is more challenging, especially if the thread interactions that lead to
triggering of the avoidance protocol are indirect or complex. Fur-
ther complications can arise due to schedule drift. Quantifying the
performance implications of such protocols is important in late-
cycle system development. In this stage of system development,
such effects are typically quantified through raw timing measure-
ments gathered through specialized hardware provided on develop-
ment boards and pulled through JTAG interfaces. Processing such
dumps is time consuming, error prone and often platform-specific.

JI.FI provides a visual mechanism for viewing subtle interac-
tions between threads as well as a temporal query engine to quickly
and succinctly discover and display relevant information. To il-
lustrate, consider the example source in Listing 1. In this exam-
ple, there are two interacting threads, and each thread necessarily
blocks the other at some point in the execution. This blocking ac-
tion creates a priority inversion (HelloThread#main() blocks
on HT#run() by way of synchronized(l)). The behavior of
this listing will be examined in detail throughout this paper.

3. JIVE OVERVIEW
JIVE is a visual debugger that represents the execution state and

history of a Java program visually by means of extended UML ob-
ject and sequence diagrams, respectively. In addition to traditional
features such as breakpoints, variable inspection, and forward step-

ping, JIVE also supports advanced features such as dynamic visu-
alizations of executions, query-based debugging, reverse stepping,
and selective tracing. Declarative queries work in synergy with
object and sequence diagrams to achieve scalable visualizations:
queries help to focus on specific regions of the diagrams, while di-
agrams provide a framework for reporting query answers and rich
visual context for their interpretation. Sequence diagrams provide
a time line that is especially useful for reporting answers to ‘when’
queries. Queries can also be formulated through a high-level tem-
plate interface.

Sequence Diagrams: As noted above, JIVE captures run-time
interactions among objects through its sequence diagram, which
consists of life lines placed horizontally across the top of the dia-
gram and activation boxes arranged vertically along these life lines.
Each life line represents one run-time object and is labeled with
the object’s class name and instance number. Each activation box
represents the execution of one method in the context of the run-
time object of the corresponding life line. The color of the acti-
vation box indicates the thread on which the method call executes.
Method calls and returns are depicted as solid and dashed arrows,
respectively. Each call arrow is labeled with the name of the called
method and an invocation number. A temporal context is also pro-
vided, in the form of a dashed horizontal line running across the
diagram. The position of the temporal context, which can be con-
trolled by the user, indicates the state of execution currently rep-
resented by the object diagram. Many of these features can be
observed on the sequence diagrams of Fig. 1. Because sequence
diagrams can become unwieldy for modestly sized programs, JIVE
supports a number of techniques to reduce the amount of infor-
mation displayed by the diagram. For instance, horizontal fold-
ing hides all nested activation boxes of a given activation, allowing
users to focus on the high-level meaning of the folded activation
rather than on its internal behavior.

Object Diagrams: JIVE’s object diagram represents a single state
of execution and visually depicts object-oriented and run-time con-
cepts, such as inheritance, objects and classes with their mem-
bers and associations, method invocations within the object/class
contexts on which calls are made, chaining of method invocations
within threads in order to represent call stacks, etc. Additionally,
object diagrams are automatically laid out and support multiple
modes of visualization to control the amount of detail displayed.
For example, member tables may be suppressed (as shown in Fig. 1);
only objects with outstanding calls may be displayed; or all objects
may be minimized. JIVE also supports user-directed filtering of
method calls, hence only those that are not filtered out (‘in-model’
calls) are represented in the diagram. Despite filtering, object di-
agrams can still grow unwieldy and it is desirable to reduce the
diagram further. Hence, we introduce a mode of visualization for
object diagrams in which the diagram is continually focused on the
active call stacks: objects serving as context for some outstanding
method activation are visible while others are fully collapsed.

Query-based Debugging: JIVE supports eight different kinds of
form-based queries: Variable Changed, Method Called, Method
Returned, Object Created, Class Invariant, Exception Thrown,
Exception Caught, and Line Executed. In order to execute a form-
based query, the user provides one or more required parameters
and submits the form. For instance, in the Variable Changed query,
the user must provide a variable name, a relational operator, and a
value. (Following Eclipse’s convention, the query interface can be
brought up by selecting, e.g., a variable name, on the editor win-
dow and pressing Ctrl+H.) The class name, instance number, and
method name parameters, which further determine the context in
which the searched variable change occurs, are all optional. Af-

Figure 1: JIVE user interface showing source code, object and sequence diagrams for the program in Listing 1.

ter a query is executed, JIVE displays each answer as a row in the
search results window, marks all query answers in the sequence
diagram as red dots (see Fig. 1), and collapses all regions of the
sequence diagram not related to the query answers. This provides
users with a reduced view of the sequence diagram, precisely fo-
cused on the query answers. JIVE’s query interface also supports
PRACTQL queries, a temporal variant of SQL. Temporal queries
are formulated using a high-level point-based temporal database
schema and efficiently evaluated using an off-the-shelf relational
database. This allows more experienced programmers to formulate
customized temporal queries when standard form-based queries are
insufficient. The benefits of point-based temporal query languages
as well as the design and implementation of the PRACTQL query
language are discussed in detail in reference [27].

Debugging and Events: The debugger part of JIVE is implemen-
ted on top of the Java Platform Debugger Architecture (JPDA) [4],
an event-based debugging architecture where debugger and debug-
ee tiers run in separate Java Virtual Machines (JVMs). The de-
bugger front-end and back-end communicate using the Java Debug
Wire Protocol (JDWP) and the debugger front-end communicates
with JIVE using the Java Debug Interface (JDI) [20]. The types of
event requests supported by JDI are: virtual machine start, death,
and disconnect; class prepare and unload; thread start and death;
method entry and exit; field access and modification; exception;
and step.

JIVE’s overall implementation is based on a model-view-control-
ler architecture, the main components of which are illustrated in
Fig. 2. JIVE’s controller has three modules: an event handler, a data
model manager, and a UI engine. The event handler requests events
from JPDA and processes event notifications received from JPDA.
The event handler is capable of inferring additional event types not
directly supported by JPDA, such as local variable changes. The

data model manager receives events from the event handler and
triggers appropriate model changes.

4. THE JI.FI SYSTEM
JI.FI builds on top of the JIVE visualization functionality and

temporal database described in Section 3 to produce a visual test
and debug system for hard real-time applications. Targeting hard
real-time systems necessitates restricting the analysis to offline de-
bugging only. Additionally, the granularity of events in the standard
JIVE model (originally designed for the Java JDI) is not well suited
for real-time systems. Lastly, JIVE’s native events do not support
the notion of real-time, only of logical time. JI.FI extends JIVE
into a full-fledged offline debugging system for real-time programs.
The JIVE side of JI.FI consists of an extended temporal model sup-
porting real-time events and states and a number of real-time visual
aids. The JI.FI temporal database requires additional relations but
the underlying PRACTQL [27] query engine remains unchanged.
The Fiji VM side of JI.FI consists of a fast and predictable logging
infrastructure exposing a useful amount of information to the JIVE
models with low overhead and little impact on predictability.

4.1 Real-Time Events
JIVE supports events as defined by the JDI as a part of the JPDA.

These events are expected to be emitted by the application while
it is executing for online debugging. The granularity of events is
typically quite fine, allowing for precise debugging of Java appli-
cations. This approach, however, is not well suited for real-time ap-
plication due to its overheads. JI.FI utilizes a more minimalistic ap-
proach for events and does not support online debugging. Instead,
events are logged, while still preserving real-time constraints, for
offline debugging through visualizations and queries.

Five basic types of event are emitted, with each type having a

Figure 2: JIVE Model-View-Controller Architecture.

number of subtypes that clarify the activity that triggered the log
message. These types are:

1. VM events: init, shutdown
2. Method events: call, entry, exit, inline entry & exit
3. Monitor events: lock and unlock (fast & slow), wait, notify
4. Thread events: create, run, yield, sleep, priority change
5. Exception events: throw, unroll, catch, termination

For each type of event, the granularity is broken down as much as
necessary to convey the critical concept and no more. For example,
lock and unlock fast paths are single events, but lock and unlock
slow paths are multiple events. The slow path Monitor Lock Begin
event indicates that a thread is attempting to enter a monitor, while
the Monitor Lock End event indicates that it has successfully done
so. These two events may be separated by an arbitrarily large num-
ber of events and an arbitrarily long period of time if the monitor is
currently held by another thread. This distinction is not required for
fast path monitor log entries, because they are emitted only when
there is no contention for the monitor.

In addition to type and subtype, events carry event-specific data
clarifying the objects or methods to which they pertain. For exam-
ple, monitor events carry an identifier for the monitor being manip-
ulated. Method events include the method being invoked. Some
event types, such as thread events, carry different information on
nearly every subtype — in the case of threads, this ranges from a
numeric thread ID to a priority to a real-time timestamp.

In comparison to traditional JDI events, some information is lost
in the name of predictability and performance, particularly in the
event-specific data attached to events. For example, method events
do not indicate the specific object on which they operate. This is
a conscious trade-off on verbosity (and thus predictability) versus
utility, with verbosity concerns relating to both the size of indi-
vidual events and the number of events emitted. Maintaining live
object state would require a large number of additional events, as
well as instrumentation of code that may not otherwise require in-
strumentation, and the addition of an extra field to method log mes-
sages. When one takes into consideration the fact that the live ob-
jects in a real-time system are often carefully accounted for in the
name of predictability, the utility of this data is reduced in compar-
ison to the cost of maintaining the state.

Other Extensions: Although the current log does not contain any
specific RTSJ [17] nor SCJ [2] specific events, we envision extend-
ing it to do so. Our current real-time events can be leveraged by
RTSJ and SCJ implementations for basic logging. However, ad-
ditional logging events for asynchronous event handling, different
thread types, and memory areas are necessary to fully communi-
cate the critical semantics of RTSJ and SCJ. To correctly handle
RTSJ and SCJ extensions we envision extending the libraries with
appropriate event emitting code.

4.2 Temporal Queries Against the Real-Time
Model

JI.FI supports temporal queries to assist in debugging hard real-
time applications. Users formulate temporal queries either directly,
using the PRACTQL query language, or through one of the pre-built
template queries exposed as fill-in forms. Formulating temporal
queries manually can be quite complicated. By exposing high-level
template queries, JI.FI hides this complexity from the user. After
the user runs a form-based query, JI.FI generates the corresponding
PRACTQL query and sends it to the temporal temporal database for
execution.

The high-level template queries provided by JI.FI allow the user
to ask the following questions:

• On which monitors was a priority inversion avoidance proto-
col triggered, and on behalf of which threads?

• What is the duration of a priority inversion avoidance proto-
col invocation?

• Which monitors are contended, and by which threads?
• Are there any deadline misses?

In designing the JI.FI temporal database, an important decision
was determining which relations, if any, the database would materi-
alize. This task, commonly known as view materialization, is quite
expensive and may degrade database performance significantly if
not properly planned and implemented [18]. In JI.FI, once the tem-
poral database is loaded, it is no longer modified. Hence, the cost of
view materialization is incurred only at load time while its benefits
are observed repeatedly in both query formulation and evaluation.

1 SELECT m1.threadId AS h, m2.threadId AS b,

2 m1.monitor AS m, m2.time
3 FROM (event NATURAL JOIN event_monitor) m1,
4 (event NATURAL JOIN event_monitor) m2,
5 (event NATURAL JOIN event_monitor) m3
6 WHERE
7 m1.monitor = m2.monitor AND
8 m1.monitor = m3.monitor AND
9 m1.threadId = m3.threadId AND
10 m1.threadId <> m2.threadId AND
11 m1.time < m2.time AND m2.time < m3.time AND
12 −− m1 is LOCK END/FAST LOCK
13 m1.kind IN (12, 13) AND
14 −− m2 is LOCK BEGIN
15 m2.kind = 11 AND
16 −− m3 is UNLOCK END/FAST UNLOCK
17 m3.kind IN (15, 16) AND
18 −− the monitor held by m1 is not released before m3
19 NOT EXISTS (SELECT 1
20 FROM (event NATURAL JOIN event_monitor) mx
21 WHERE mx.kind IN (15,16) AND
22 m1.monitor = mx.monitor AND
23 m1.threadId = mx.threadId AND
24 m1.time < mx.time AND mx.time < m3.time);

Listing 2: Monitor Contended Using Event Relations.

The benefit of materialized relations is illustrated through the
“monitor contended” query. This query returns a relation con-
tend(h, b, m, time) where each tuple indicates that a thread h
causes another thread b to block on monitor m at the given time.

The query presented in Listing 2 uses low-level event relations
event(time, kind, threadId) and event monitor(time, monitor).
Lines 3–5 join each pair of event and event monitor relations on
their time fields. The more complex part of the query is the anti-
semijoin in lines 19–24, which guarantees that no monitor unlock
event occurs after m1 and before m3 on the same monitor and
thread as those of m1. This means that m2’s thread was effectively
blocked until (at least) m3.

The version of the “contended monitor” query presented in List-
ing 3 takes advantage of the materialized monitor relation. The
JI.FI temporal database materializes two state relations:
monitor(monitor, holder, lockCount, time) and thread(threadId,
state, time). These are abstract point-based temporal relations [7]
that represent the state of monitors and threads, respectively, for ev-
ery (relevant) instant of execution. Internally, the temporal database
stores these relations efficiently as concrete interval-based rela-
tions. The abstract-to-concrete mapping is performed transparently
by the PRACTQL query engine [27].

1 SELECT holder AS h, threadId AS b, monitor AS m, time
2 FROM event NATURAL JOIN event_monitor
3 NATURAL JOIN monitor
4 WHERE
5 −− event is LOCK BEGIN
6 kind = 11 AND
7 −− monitor is locked
8 lockCount > 0 AND
9 −− lock is held by a different thread
10 holder <> threadId

Listing 3: Monitor Contended Using State Relations.

The query in Listing 3 is much simpler to formulate and under-
stand. It is interpreted as follows: a Monitor Lock Begin event
happens at the instant in which the monitor is held (i.e., lockCount
> 0) by a different thread. The natural join in the query is used
to guarantee that monitor state tuples match the respective monitor
and time fields of the event and event monitor tuples. Hence, the
monitor lock event effectively represents the instant in which the
event’s thread blocks.

In addition to being much simpler to formulate and understand,

the second query should be significantly more efficient than the first
one in most temporal database instances. This is due to the smaller
number of relations referenced in the query (three) and the absence
of anti-semijoins. The first query references six relations in the
FROM clause and two more in the anti-semijoin subquery. Depend-
ing on the size of the temporal database and the query plan selected
by the underlying query engine, the difference in performance be-
tween these queries may be of orders of magnitude.

4.3 Real-Time Visual Aids
JI.FI renders slightly modified versions of the Object and Se-

quence diagrams provided by JIVE. The reason for this is that the
real-time event log does not contain a number of events normally
used by JIVE to render its diagrams. For instance, object creation
and field/local variable modifications are not included in the Fiji
VM log. Thus, object environments and field values cannot be
represented in the JI.FI Object Diagram. Thread objects are the
exception to this rule, since their creation and changes to some of
their instance fields can be inferred from low-level events. Other
than that, only static environments and their fields are represented
in the JI.FI Object Diagram. However, static field values remain
unknown (<? >) for the duration of execution. Fig. 3 illustrates a
JI.FI Object Diagram for our running example.

Since JI.FI is unaware of the existence of objects other than
threads, each method call in a diagram is associated with its declar-
ing class environment instead of the actual object context on which
the method was called. This essentially clusters method calls within
the appropriate class. The effect on the Object Diagram is that acti-
vation records are always placed within class environments. On the
Sequence Diagram, method calls are always placed under the class
life lines. Thread creation is the only exception– a life line for each
thread object is created by JI.FI and the call to their constructors is
placed on the respective life line. Fig. 4 presents a JI.FI Sequence
Diagram for our running example.

A new visualization provided by JI.FI is the Thread State Di-
agram. This is a diagram specialized for real-time programs the
purpose of which is to help users visualize interactions among the
threads running in their programs. In particular, these diagrams can
help identify unexpected or suspiciously long waits and blocks on
user threads. JI.FI allows the user to select which threads and time
intervals to display. The default behavior is to show all threads for
the duration of the execution.

The Thread State Diagram of Fig. 5 shows the interaction be-
tween the main thread and the user thread of our running example.
The main thread starts in the ready state and transitions into the
running state so quickly that it is not visible in the diagram. This
is quite different from the user thread, which remains in the ready
state for many clock cycles before transitioning into the running
state when the main thread calls its start() method. As soon as
the main thread invokes wait() on the b object, it relinquishes
its lock on this object’s monitor and then transitions into a wait
state. Meanwhile, the user thread acquires locks on the monitors
for objects l and b, in this order. Once it holds a lock on b, it
calls notify() on this object, effectively waking up the main
thread. Finally, the user thread sleeps for 50ms, time during which
it still holds a lock on l. The main thread tries to lock object l
but remains blocked while the user thread is sleeping. When the
user thread wakes up, it releases its lock on b and the main thread
eventually unblocks and completes execution.

4.4 Event Log Realization in Fiji VM
The Fiji VM real-time event logging infrastructure is carefully

designed to log as predictably as possible. Each thread logs to a

Figure 3: JI.FI object diagram for the program in Listing 1. The main thread (violet) and the user thread (green) have outstanding
calls to Object.wait() and Thread.sleep(long, int) respectively.

Figure 5: Thread state diagram with state changes in the main thread and the user thread. No state changes occur in the omitted
intervals.

1 struct fivmr_FlowLogEvent_s {
2 uint16_t type;
3 uint16_t subtype;
4 uint32_t tid;
5 uint64_t timestamp;
6 uint64_t data;
7 };

Listing 4: Fiji VM log event structure

thread-local buffer (requiring no locking), and hands that buffer,
via an extremely rapid handshake requiring only a few machine in-
structions in the critical section, to a low-priority thread dedicated
to log flushing. Both the thread-local buffer and individual log mes-
sages are of a constant size known at compile time, so buffer checks
and message writes are very fast. Many parts of each individual log
message are also compile-time constants, and the logging code is
aggressively inlined. The total code for logging an event on the fast
path (when a handshake with the log flushing thread is not required)
is on the order of a dozen machine instructions.

Log entries are structured to fall on natural word-size boundaries
and to be as compact as practically possible. Listing 4 shows the
C structure for a log event. The event consists of a type, subtype,

thread ID, Java nanosecond timestamp, and 64 bits of event-specific
data. Note that the largest word in the event is 64 bits long, and that
the complete log message is three 64 bit words in length, with three
bit-aligned shorter words packed into the first of these 64 bit words.

Structuring the logging path for minimum handshaking and run-
time processing overhead, with fixed-size buffers handed off to
a log flushing thread, leads to on-disk logs that are not in strict
chronological order. Log entries for any given thread are in strict
chronological order, but buffers for different threads may arrive out
of order depending on buffering delays and run time behaviors. The
real-time timestamp present on each log entry is sufficient to pre-
serve total ordering for single core systems, but true total ordering
ambiguity may arise in multi-core systems. We believe that this
trade-off is justified in order to reduce logging overhead. In many
circumstances where total ordering is critical to log coherence, it
may be derived from the semantic meaning of the log entries them-
selves. For instance, if two threads attempt to enter a monitor at the
same instant on separate cores, only one thread will succeed imme-
diately and the other will block; the event emitted by the thread that
succeeded immediately occurred logically before the event emitted
by the thread that blocked. A coherent partial ordering may be eas-
ily computed offline when processing the logs. If a local log-buffer

overruns, the events that would cause the overrun are lost.
Some log events are inserted into the VM runtime source code at

critical points, such as the thread creation, destruction, and priority
change events; system startup and shutdown events; and monitor
events. Other events are inserted by the Fiji VM compiler into user
or VM code at compile time. When the logging infrastructure is
disabled at compile time, all of the code and tracking structures are
elided entirely from the compiled code via macro expansions or
compiler omission. Only code of particular interest is instrumented
at compile time; by default, this means that user-provided code is
instrumented, while the VM and Java standard libraries are not.

Method calls represent an interesting case, because they are both
very common and very performance-sensitive. They have the added
complexity of inline, static, and dynamic dispatches. For these rea-
sons, method logging is inserted by the Fiji VM compiler at com-
pile time.

Method instrumentation is performed after all optimization passes,
including, critically, all inlining. Once the Fiji VM compiler has
completed optimization and inlining, an additional code pass iter-
ates over those user-provided methods with remaining non-inline
invocations and inserts a Method Enter event at the beginning of

Figure 4: JI.FI sequence diagram clarifying thread states for
the program in Listing 1.

each method with matching Method Exit events for every return
from any method. VM-internal methods and the standard libraries
are not instrumented. This process is relatively straightforward.

A more interesting operation on non-inline methods is a limited
emission of information on non-instrumented methods. While in-
strumenting (for example) java.lang.String would lead to a
lot of instrumentation that is likely uninteresting to the developer,
instrumenting that the developer’s code directly invoked a method
on a java.lang.String object is not. Therefore, method invo-
cations are examined, and any point where an instrumented method
invokes a non-instrumented method has event emissions inserted
around the invocation, so that the log is as if the non-instrumented
method logged its own invocation but none of the methods it in-
voked in turn — without incurring logging cost at every invocation.

The final method instrumentation is for inlined methods. Each
inlined method has method entry and exit log events inserted into
its inlined code, as for non-inlined methods, but in this case the
nested hierarchy of inline invocations must be tracked in order to
determine which inline methods should or should not be logged.
The same rules are applied as for non-inlined methods, though the
implementation differs somewhat. Instrumented methods emit log
events, and non-instrumented methods invoked directly by instru-
mented code emit log events. Non-instrumented methods inlined
into non-instrumented methods that are in turn inlined into instru-
mented code are not emitted. This makes inline method events
behave just as in standard static dispatch, except that the inline
method events are flagged as having been inlined by the compiler.

5. EVALUATION
The real-time executables in this section were run on a lightly

loaded Intel Core i5 2300 CPU, restricted to a single core to pre-
serve high-accuracy in-core processor timings. The executable un-
der test was the highest priority process in the system, and the only
process running with real-time privileges.

The CDx benchmark suite [23] is an open source family of bench-
marks with identical algorithmic behavior for different hard and
soft real-time platforms. While a complete description is given
in [22], we present enough basic information for readers to under-
stand the computation performed in CDx.

The benchmark is structured around a periodic real-time thread
that analyzes simulated radar frames to detect potential aircraft col-
lisions. The benchmark can thus be used to measure the time be-
tween releases of the periodic task as well as the time it takes to
compute the collisions. The need for detection of potential colli-
sions prior to their occurrence makes CDx a hard real-time bench-
mark, as each frame must be processed prior to a concrete deadline.

5.1 Logging
Low logging overhead and high log performance predictability

are critical to the viability of real-time debugging. There are several
tunable parameters in the logging infrastructure configuration:

• The number of log events in each per-thread log buffer
• The method of timestamping used for event timestamps
• The quantity of instrumented code
• The event types enabled

Fig. 6 depicts the time spent performing detections during each
release of the detection thread in CDj, the Java version of the CDx
benchmark, with and without logging enabled. The log buffer size
for this run is 48 events, and all supported events are emitted for the
CDj code. Execution times are in processor cycles as reported by
the processor timestamping instruction, and each release represents
one of 1,000 releases in a single execution.

0

100000

200000

300000

400000

500000

0 100 200 300 400 500 600 700 800 9001000

D
ur

at
io

n
(c

yc
le

s)

Release number

No logging
With logging

Figure 6: Raw execution time data. Jitter is caused by bench-
mark behavior.

Buffer Size Relative Cost Buffer Size Relative Cost
32 1.06 256 0.927
48 1.0 512 0.924
64 0.975 1024 0.912

128 0.951

Table 1: Performance of various log buffer sizes in entries, rel-
ative to 48-entry buffers. Note that the steps are logarithmic.

The performance impact of this level of logging is significant, us-
ing about 2.5 times as many processor cycles to complete each re-
lease as compared to the log-free code. However, it provides com-
plete method logging for the user-provided code with little memory
overhead (just under 1.5 kB per thread for event buffers, depending
on how often the log flushing thread can service its queue).

Increasing the size of the per-thread log buffer reduces the com-
putation overhead of handshaking with the log flushing mechanism,
but increases the memory overhead for per-thread log buffers. Ta-
ble 1 shows the relative difference in computation overhead for var-
ious log sizes, compared to the 48 entry buffer in Fig. 6. Each step
in buffer size achieves about 2.5% gains in performance from 48
to 256 buffers, after which the benefits decrease dramatically. The
most significant benefits are realized by the time the buffer reaches
64 entries in size, making this a reasonable buffer size for systems
with moderate memory constraints. For systems with more mem-
ory available, the 128 and 256 event buffers fit on one or two 4 kB
pages, respectively, which may be attractive for page-based alloca-
tion mechanisms.

The full log of 1,000 releases of CDj from Fig. 6 contains about
9.27 M events, of which about 9.21 M are method events. The
common Java idiom of providing objects with getters and setters,
methods which perform no calculation but merely store or retrieve
object state, leads to a potentially large number of method calls for
which the call logging is disproportionately expensive compared
to the method itself. Fiji VM employs a metric for inlining where
the code size of a method is estimated and compared to the code
size for a method call site. If the method body is smaller than a
call site, it is always inlined unless inlining is entirely disabled.
By leveraging this optimizer calculation in reverse, Fiji VM can
omit logging instrumentation for most getters and setters, eliding
the instrumentation for inlined methods smaller than a call site,
without losing substantial amounts of valuable information from
the log. Applying this logging optimization to the 256-entry buffer

executable from Table 1, which displayed a mean release duration
of 282,132 clock cycles, the number of log events emitted in a full
run of 1,000 releases is reduced to roughly 4.63 M (4.58 M method
events) and the mean release duration to 201,442 clock cycles. This
represents an overhead of only 67% compared to non-instrumented
code, and a 50% reduction in logging overhead, in return for a neg-
ligible loss of useful information.

At least as important as the absolute overhead of logging in this
context is the predictability of the logging infrastructure. In that re-
spect, the Fiji VM implementation of the JI.FI log structure is more
than successful. The split nature of log generation and output, cou-
pled with careful design to keep most log event data compile-time
static or available via a trivial lookup, leads to a crisp linear scaling
of computational overhead when logging is enabled. Looking at
1,000 releases of a typical CDj execution, the coefficient of varia-
tion of the number of cycles required for each release scale within
1% at various levels of logging, and with logging disabled.

Note that the 67% overhead figure for nearly complete method
flow, monitor, and thread activity is an upper bound. The imple-
mentation evaluated here is carefully designed for predictability
and performance in the large, but has not been optimized in the
small, a task which may provide substantial benefits. In partic-
ular, the entire logging infrastructure uses only high-level C and
Java implementation, and employs no platform-specific code. (The
one possible exception to this statement, depending on how one
views it, is timestamping of log messages; this uses an internal Fiji
VM function that reduces to the x86 RDTSC hardware timestamp
instruction on the platform under test.) Careful platform-specific
fine-tuning of log entry creation to take advantage of processor
strengths (particularly where 64-bit data values are concerned) may
yield higher performance. Additionally, while the JI.FI platform is
designed to require no hardware assistance, the complete lack of
hardware assistance is a “worst case” scenario. On platforms with
fast JTAG communication, high speed bus-connected storage, hard-
ware logging assistance, or other such features, performance may
be substantially improved.

5.2 JIVE
Log Import: Loading a Fiji VM real-time event log into JI.FI is a
straightforward process. First, a Java project is created. The source
code from which the log was created can be optionally added to
the project, in which case JI.FI will use it during the creation of the
temporal database to obtain additional meta-data. Finally, a new of-
fline launch configuration is created and configured for the project.
This is a new feature in JI.FI which allows a Java project to be
associated with an external log file. Once the offline launch config-
uration is executed, the log file is loaded, internal models created,
and all visualizations rendered. The current prototype is capable
of loading and processing the logs, represented in an XML inter-
change format, at a rate of approximately 12MB/sec. For instance,
a two iteration run of the CDj benchmark results in a 24.1 MB log
file with 87 K events (the raw Fiji VM log file has only about 57 K
events, some synthetic events are generated in the translation pro-
cess). JI.FI loads this file and renders all diagrams in 2.1sec.
Temporal Database Export: In order to export the internal models
as a temporal database, JI.FI provides a command line interface to
the export feature. The actual export uses a JDBC connection to a
PostgreSQL database in order to load a model consisting of both
static (e.g., meta-data) and dynamic information (e.g., events and
states). The temporal database resulting from the CDj benchmark
contains about 330 K tuples which are exported to the database
in approximately 16.4 sec, with an average throughput of 19.8 K
tuples/sec. The relatively slow database export is due to two main

factors — first, the export is I/O bound, and second, every method
call in the event log incurs additional costs at the database: namely,
the creation of environment records and their respective members.
These are essential for rendering Object and Sequence diagrams.
Temporal Query Evaluation: We expect most queries formulated
by JI.FI users to be either temporal select-project-join (SPJ) queries
or non-temporal aggregate and set/bag queries. This class of queries
can be used to answer questions such as those posed in section 4.2
and many other, more complex, queries. The advantage of such
queries is that they are translated by the PRACTQL query engine
into standard SQL queries with a slightly modified sf SELECT and
WHERE clauses, but no additional table references. The implica-
tion is that such queries will be optimized by the underlying SQL
query engine (e.g., PostgreSQL) as well as any other SQL query in
a typical database application.

For queries involving temporal aggregation, temporal set/bag op-
erations, and temporal grouping, the performance question is still
an open problem. Preliminary results obtained in the course of the
development of the PRACTQL query engine suggest that the perfor-
mance of such queries is just slightly inferior to their non-temporal
counterparts for most cases, degrading to a worst-case quadratic
performance when the structure of the temporal data is shaped as a
large triangle (i.e., a set of temporal tuples with common values for
their non-temporal attributes and, for every pair of tuples, the inter-
val of one is strictly contained in the interval of the other). A full
discussion of the issues involved in the performance of this kind of
temporal queries as well as queries involving temporal recursion,
however, is outside the scope of this paper.

6. RELATED WORK
Query-Based Debugging: Query-based debugging was first pro-
posed by Lencevicius et al [26]. In their approach, a query is for-
mulated in a procedural style in the implementation language it-
self and run against current objects in the running program’s heap.
However, there is no support for querying past program state or
program control flow. A more recent tool is Whyline [24], an inter-
rogative debugger supporting ‘why did’ and ‘why did not’ queries
about program executions. It works on recorded, rather than live,
executions and therefore online debugging is not supported. Why-
line does not expose a query language. PTQL [15] is a relational
query language with SQL-like syntax designed to query program
traces online via instrumented code. Given a Java program and
a PTQL query, a compiler instruments the Java code so that the
PTQL query is executed on-line. There is no support for tempo-
ral queries and query results are presented in textual form. The
Trace-Oriented Debugger [31], TOD, is a scalable omniscient de-
bugger featuring both query-based debugging and dynamic visual-
izations. It uses bytecode instrumentation to generate events which
are recorded to a specialized database. TOD’s querying capabilities
are encapsulated as high-level features: stepping, state and control
flow reconstitution, and simple when/where queries over variables.
These features are based on two low-level primitives, cursor and
count. TOD provides high-level visualizations in the form of mu-
rals [21], which are graphs showing the evolution of event density
for a given class of events over time.
Dynamic Visualizations: Ovation [9] visualizes execution traces
using an execution pattern view, a form of interaction diagram that
depicts program behavior. Diagrams support a number of opera-
tions such as collapsing, expanding, filtering, and execution pattern
detection (e.g., repetition). Amida [35] extracts sequence diagrams
from program traces and applies a dominance algorithm in order
to detect and remove local objects contributing to internal behavior
of dominator objects. TPTP [12] is primarily concerned with col-

lecting profiling data, but can represent executions as a sequence
diagrams, interactively. It supports filtering and hiding methods
and objects, as well as collapsing call trees. However, the latter
case is not automatic. Program Explorer [25] uses merging and
filtering to reduce the size of its object and interaction graphs. Pro-
grams are visualized interactively and their execution traces viewed
as interaction charts which are similar to sequence diagrams. ISVis
[21] uses static and dynamic analyses to construct message flow
diagrams similar to sequence diagrams. These diagrams represent
interaction patterns in the trace. A global view of the execution is
displayed in its execution mural.

One of the most popular pedagogic IDEs, BlueJ [1], is an in-
tegrated development environment (IDE) for Java specifically de-
signed for introductory programming courses using an objects-first
approach. However, BlueJ does not show the dynamic object struc-
ture nor call/execution histories. A lightweight IDE providing vi-
sualizations for a variety of data structures, jGRASP [8] generates
views automatically and updates them dynamically as users step
through the code. jGRASP does not feature dynamic visualizations
of call/execution histories, and the dynamic visualizations of exe-
cution state focus on individual objects and, therefore, do not pro-
vide a global view of execution state. A program visualization tool
that animates program executions and supports the learning pro-
cess is ViLLE [32]. On the other hand, it lacks two key features:
support for object-oriented programming languages and dynamic
visualizations of execution state and call/execution histories.
Debugging Real-Time Embedded Systems: During the course of
its development, a real-time embedded system undergoes a contin-
uous validation and verification regimen. Part of this regimen is
schedulability analysis [28], which proves whether or not the tasks
that comprise a given system can meet their deadlines in the sys-
tem as a whole. Recent work on multi-criteria schedulability analy-
sis [6] has been applied for performance debugging of task models.
We believe JI.FI can be leveraged to empirically validate schedules
as well as identify profitable uses of slack time to reduce priority
inversion avoidance overheads.

AFTER [5] is a tool used in the latter stages of the software de-
velopment cycle for fine-tuning a real-time embedded system to
meet its timing requirements. AFTER leverages raw timing data
and correlates it to a timing specification to produce a temporal
image of the current system timing results. Currently JI.FI does
not support testing and debugging using a system specification or
schedulability analysis directly. JI.FI can provide salient informa-
tion about timing analysis through the use of temporal queries. We
can envision parameterizing JI.FI with a system specification to
augment JI.FI’s capabilities to include automated prediction to help
tune a system for its timing requirements.

Debugging real-time distributed systems typically involves light-
weight replay mechanisms [34]. To achieve a replay mechanism
that is light-weight, such schemes only log a sub-set of all events.
The JI.FI logging infrastructure realized in Fiji VM [29, 30] em-
ploys a similar technique of emitting only key events to reduce
overhead. Instead of a replay mechanism, JI.FI provides power-
ful temporal queries that can correlate temporally disparate events.

Many real-time systems are verified with respect to either a struc-
tural or behavioral specification. Recent work on real-time logic
(RTL) [3] has provided mechanisms for systematic debugging based
on incremental satisfiability counting for systems that use a behav-
ioral specification. We envision extending JI.FI to automatically
synthesize relevant temporal queries based on safety assertions pro-
vided as a part of a behavioral specification. Such a specification
can also be leveraged to determine the granularity of logging and
the definition of relevant events.

7. CONCLUSIONS AND FUTURE WORK
We presented JI.FI, a framework for testing and debugging hard

real-time embedded systems. Our results indicate that the logging
required for useful visualizations and real-time temporal queries
can be accomplished in real-time without affecting the deadlines
of the application when taken into account during schedulability
analysis. We are currently planning on extending the real-time log
definition and JI.FI visualization repertoire to include RTSJ and
SCJ specific events.

8. REFERENCES
[1] BlueJ– The interactive Java environment.
[2] JSR 302. Safety critical Java technology, 2007.
[3] Stefan Andrei, Albert M. K. Cheng, Wei-Ngan Chin, and Miahi

Lupu. Systematic debugging of real-time systems based on
incremental satisfiability counting. In Proceedings of the Real Time
on Embedded Technology and Applications Symposium, RTAS ’05,
pages 519–528, Washington, DC, USA, 2005. IEEE Computer
Society.

[4] Java Platform Debugger Architecture. http://docs.oracle.
com/javase/1.5.0/docs/guide/jpda/.

[5] Gaurav Arora and David B. Stewart. A tool to assist in fine-tuning
and debugging embedded real-time systems. In Proceedings of the
Workshop on Languages, Compilers, and Tools for Embedded
Systems, LCTES ’98, pages 83–97, London, UK, UK, 1998.
Springer-Verlag.

[6] Unmesh D. Bordoloi and Samarjit Chakraborty. Performance
debugging of real-time systems using multicriteria schedulability
analysis. In Proceedings of the 13th IEEE Real Time and Embedded
Technology and Applications Symposium, RTAS ’07, pages 193–202,
Washington, DC, USA, 2007. IEEE Computer Society.

[7] Jan Chomicki and David Toman. Temporal databases. In
Michael David Fisher, Dov M. Gabbay, and Lluis Vila, editors,
Handbook of Temporal Reasoning in Artificial Intelligence, pages
429–467. Elsevier B. V., March 2005.

[8] James H. Cross, II and T. Dean Hendrix. jGRASP: An integrated
development environment with visualizations for teaching Java in
CS1, CS2, and beyond. J. Comput. Small Coll., 23(2):170–172, 2007.

[9] Wim De Pauw, David Lorenz, John Vlissides, and Mark Wegman.
Execution patterns in object-oriented visualization. pages 219–234,
April 1998.

[10] GDB: The GNU Project Debugger.
http://sources.redhat.com/gdb/.

[11] The Java Debugger. http://docs.oracle.com/javase/1.
5.0/docs/guide/jpda/jdb.html.

[12] Eclipse. Eclipse Test and Performance Tools Platform.
[13] Paul Gestwicki and Bharat Jayaraman. Methodology and architecture

of JIVE. In Proceedings of the Symposium on Software visualization,
SoftVis ’05, pages 95–104, New York, NY, USA, 2005. ACM.

[14] Paul V. Gestwicki and Bharat Jayaraman. Jive: java interactive
visualization environment. In Conference on Object-oriented
programming systems, languages, and applications, OOPSLA ’04,
pages 226–228, New York, NY, USA, 2004. ACM.

[15] Simon F. Goldsmith, Robert O’Callahan, and Alex Aiken. Relational
queries over program traces. In OOPSLA ’05: Proceedings of the
20th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pages 385–402,
New York, NY, USA, 2005. ACM.

[16] J. B. Goodenough and L. Sha. The priority ceiling protocol: A
method for minimizing the blocking of high priority Ada tasks. In
IRTAW ’88: Proceedings of the second international workshop on
Real-time Ada issues, pages 20–31, New York, NY, USA, 1988.
ACM.

[17] James Gosling and Greg Bollella. The Real-Time Specification for
Java. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2000.

[18] Ashish Gupta and Inderpal Singh Mumick. Materialized views. In
Ashish Gupta and Iderpal Singh Mumick, editors, Maintenance of
Materialized Views: Problems, Techniques, and Applications, pages

145–157. MIT Press, Cambridge, MA, USA, 1999.
[19] Wolfgang Haberl, Markus Herrmannsdoerfer, Jan Birke, and Uwe

Baumgarten. Model-level debugging of embedded real-time systems.
In Proceedings of the Conference on Computer and Information
Technology, CIT ’10, pages 1887–1894, Washington, DC, USA,
2010. IEEE Computer Society.

[20] The Java Debug Interface. http://docs.oracle.com/
javase/1.5.0/docs/guide/jpda/jdi/.

[21] Dean F. Jerding, John T. Stasko, and Thomas Ball. Visualizing
interactions in program executions. pages 360–370, May 1997.

[22] Tomas Kalibera, Jeff Hagelberg, Filip Pizlo, Ales Plsek, Ben Titzer,
and Jan Vitek. CDx: a family of real-time Java benchmarks. In
Workshop on Java Technologies for Real-Time and Embedded
Systems, JTRES ’09, pages 41–50, New York, NY, USA, 2009.
ACM.

[23] Tomas Kalibera, Pavel Parizek, Ghaith Haddad, Gary T. Leavens, and
Jan Vitek. Challenge benchmarks for verification of real-time
programs. In Proceedings of the 4th ACM SIGPLAN workshop on
Programming languages meets program verification, PLPV ’10,
pages 57–62, New York, NY, USA, 2010. ACM.

[24] Andrew J. Ko and Brad A. Myers. Finding causes of program output
with the Java Whyline. In CHI ’09: Proceedings of the 27th
international conference on Human factors in computing systems,
pages 1569–1578, New York, NY, USA, 2009. ACM.

[25] Danny B. Lange and Yuichi Nakamura. Object-oriented program
tracing and visualization. Computer, 30(5):63–70, May 1997.

[26] Raimondas Lencevicius, Urs Hölzle, and Ambuj K. Singh.
Query-based debugging of object-oriented programs. In Proceedings
of the Conference on Object-oriented programming, systems,
languages, and applications, pages 304–317, New York, NY, USA,
1997. ACM.

[27] Demian Lessa, Jan Chomicki, and Bharat Jayaraman. Temporal data
model for program debugging. In International Symposium on
Database Programming Languages, August 2011.

[28] C. L. Liu and James W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment. Journal of the
ACM (JACM), 20:46–61, January 1973.

[29] Filip Pizlo, Lukasz Ziarek, Ethan Blanton, Petr Maj, and Jan Vitek.
High-level programming of embedded hard real-time devices. In
Proceedings of the 5th European conference on Computer systems,
EuroSys ’10, pages 69–82, New York, NY, USA, 2010. ACM.

[30] Filip Pizlo, Lukasz Ziarek, and Jan Vitek. Real time Java on
resource-constrained platforms with Fiji VM. In Proceedings of the
Workshop on Java Technologies for Real-Time and Embedded
Systems, JTRES ’09, pages 110–119, New York, NY, USA, 2009.
ACM.

[31] Guillaume Pothier, Éric Tanter, and José Piquer. Scalable omniscient
debugging. SIGPLAN Not., 42(10):535–552, 2007.

[32] Laakso M.-J. Kaila E. Salakoski T. Rajala, T. VILLE– A
Language-Independent Program Visualization Tool. In Raymond
Lister and Simon, editors, Proceedings of the Baltic Sea Conference
on Computing Education Research, volume 88. Australian Computer
Society, 2007.

[33] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance
protocols: An approach to real-time synchronization. IEEE Trans.
Comput., 39(9):1175–1185, 1990.

[34] Henrik Thane and Hans Hansson. Using deterministic replay for
debugging of distributed real-time systems. In Proceedings of the
12th Euromicro conference on Real-time systems,
Euromicro-RTS’00, pages 265–272, Washington, DC, USA, 2000.
IEEE Computer Society.

[35] Yui Watanabe, Takashi Ishio, Yoshiro Ito, and Katsuro Inoue.
Visualizing an execution trace as a compact sequence diagram using
dominance algorithms. Antwerp, Belgium, october 2008.

[36] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas
Holsti, Stephan Thesing, David Whalley, Guillem Bernat, Christian
Ferdinand, Reinhold Heckmann, Tulika Mitra, Frank Mueller,
Isabelle Puaut, Peter Puschner, Jan Staschulat, and Per Stenström.
The worst-case execution-time problem - overview of methods and
survey of tools. ACM Trans. Embed. Comput. Syst., 7(3):36:1–36:53,
May 2008.

